
Anti-GBM disease induced by sheep antibody to whole rat glomeruli. The disease is 
characterized by linear deposits of sheep and rat IgG by immunofluorescence (A) and 
moderate mesangial hypercellularity, inflammatory infiltrates, glomerulosclerosis, and 
crescents in Bowman’s space (H&E section). 
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Descriptions of Classical Models of Glomerulonephritis 
 

     1.  Models of Immune-Mediated Glomerular Disease:  
             Two widely used rat models to investigate mechanisms of immune glomerulonephritis involving 
glomerular capillary immune deposits are anti-GBM nephritis and Passive Heymann Nephritis (PHN). Location 
of immune complexes in the GBM determines the resultant glomerular injury and renal syndrome (reviewed in 
3, 28, and 29). Immune complexes that tend to accumulate along the inner surface of the glomerular capillary 
wall on the endothelial cell surface and in subendothelial space (like anti-GBM antibody and antigen-antibody 
complexes) are directly accessible to circulating inflammatory cells and mediators and often associated with 
crescent formation (28,29). The consequent activation of complement, infiltration of inflammatory cells and 
release of cytokines, growth factors and oxidants is injury to the glomerular capillaries and development of 
proliferative glomerulonephritis, alterations to the permeability barrier and development of crescents (28,29). 
Immune complexes that tend to localize in the subepithelial region, away from the capillary lumen (as in Anti-
Fx1A, PHN) lead to minimal infiltration and proliferation (30,31) but rather glomerular epithelial injury and 
proteinuria.  

a. Anti-GBM disease: 
Administration of antibodies 
to whole glomeruli or to 
isolated glomerular basement 
membrane (GBM) induces a 
glomerulonephritis involving 
early leukocyte adhesion 
molecules in regulating 
neutrophil and platelet 
localization; proteases, 
reactive oxygen species and 
eicosanoids mediating injury 
in augmenting these 
processes (3,28) leading to a 
crescentic glomerulonephritis 
and interstitial nephritis 
(32,33). Preimmunization of 
rats with IgG before passive 
injection of nephritogenic antibody induces an accelerated disease model.  The model has been heavily used 
to examine cellular and immune-mediated mechanisms of glomerulonephritis (3,34-37), and pathogenesis of 
crescents (32,33,38-40), mesangial hypercelluarity (41), interstitial fibrosis (3,33,42-44) and proteinuria. 
Complement and neutrophil-dependent injury, macrophages, T-cells, and platelets, procoagulant signals and 
matrix accumulation are just a few of the many cellular mediators of anti-GBM disease. A variety of therapeutic 
interventions have been used to ameliorate the disease and define pathogenic mechanisms (45-49). Product # 
PTX-001S. 
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Membranous 
nephropathy 
induced by sheep 
antibody to rat 
Fx1A. The disease 
is characterized by 
finely granular 
staining of sheep 
and rat IgG by 
immunofluorescenc
e (A&B) and 
subepithelial 
deposits by EM (C). 

b.  Membranous Nephropathy, (Passive Heymann Nephritis, PHN): Membranous nephropathy (MN) is 
a slowly progressive glomerular disease characterized by subepithelial immune complex deposits associated 
with increased protein excretion (50) without associated glomerular hypercellularity in acute injury. 
Subepithelial deposits, generalized thickening of the basement membrane, sclerosis and interstitial changes 
can occur depending on the severity and duration of the disease. The disease has been associated with an 
extensive list of other immune diseases, infectious or parasitic diseases, drugs and toxins tumors and other 
secondary diseases (50).  

Immunization of rats with a 
proximal tubular epithelial fraction 
(Fx1A) induces an immune complex 
“membranous” nephritis characterized 
by subepithelial immune deposits and 
proteinuria with striking resemblance to 
human disease (51,52). Fx1A contains a 
large glycoprotein gp330 (megalin) a 
nephritogenic antigen produced by 
glomerular epithelial cells (53-56). 
Passive administration of anti-Fx1A 
antibody produces a nephritis defined by 
two phases: 1) a heterologous phase 
representing an acute nephritis induced 
by exogenously administered antibody, 
and 2) a chronic autologous phase 
characterized by the production of the 
hosts own response to the exogenous 
(heterologous) sheep immunoglobulin 
planted within glomerular structures. All 
variants of the model produce 
subepithelial deposits and proteinuria.  
Among the many uses of the model, 
have been studies to investigate 
mechanisms of glomerular permeability and immune complex deposition (56-59), role of complement-induced 
glomerular epithelial injury (56,60,61), and mechanisms of glomerular epithelial cell response to injury (56,62-
67).  Several therapeutic interventions including statins (68, ACE inhibition (68) and inhibition of 
cyclooxygnease (69), cyclin dependent kinase (70) and heparanase (71) have been successful in the 
amelioration of epithelial cell injury and proteinuria. Product # PTX-002S. 
 
2.  Mesangioproliferative glomerulonephritis:  

Mesangial proliferation is a very common feature of many human glomerular diseases including IgA 
nephropathy, resolving post-infectious glomerulonephritis and a number of secondary glomerular diseases 
such as lupus nephritis, Schonlein-Henoch purpura, rheumatoid arthritis, liver cirrhosis, Alport’s syndrome, and 
diabetic nephropathy (1,2). The disease is characterized by varying degrees of mesangial hypercellularity and 
mesangial matrix expansion. In progressive cases these cellular changes may lead to glomerular capillary 
narrowing, sclerosis and capsular adhesions as a result of injury by a variety of immunologic, toxic, metabolic, 
mechanical, and inflammatory mediators (1-3). Although several experimental models have been developed, 
the most widely used model for the study of mesangial proliferation has been the anti-thymocyte (anti-Thy-1) 
model (4,5). Antibody to thymocytes (ATS) is reactive to a surface Thy-1 antigen present on rat mesangial cells 
(4,5).  Administration of ATS induces a complement-dependent mesangiolysis followed by a rapid mesangial 
proliferative glomerulonephritis that peaks within 5 days after injection, and then resolves over time (4,5).  
  ATS (anti-Thy-1) is a very well characterized rat model of human mesangioproliferative 
glomerulonephritis and has been exceptionally useful in examining mechanisms of mesangial cell injury, 
mediators of proliferation, and extracellular matrix synthesis (5-10).  Eloquent studies identified roles for PDGF, 
TGF-β and FGF in the pathogenesis of proliferation and matrix synthesis during disease progression (11-16).  
Moreover, the model has been used for the investigation of inflammatory response to glomerular injury (17,18). 
Mesangial cell apoptosis also occurs early and late in the disease and the model has been used to study 
programmed cell death in kidney disease (19-21).   Other uses for the model are the examination mesangial 



Mesangioproliferative glomerulonephritis in a rat kidney 5 days after injection of sheep 
anti-thymocyte (Thy-1) serum. Glomerular mesangial hypercellularity and focal 
proliferative nodules are characteristic of the disease by H&E (A). Mesangial cell 
activation is demonstrated by acquisition of alpha-smooth muscle actin by 
immunofluorescence (B). 

cell response to injury and expression of α-smooth muscle actin (22), oxidative stress (23) origin of glomerular 
cells (24,25) and the progression of glomerulosclerosis or interstitial fibrosis (26,27), which may be elicited by 
multiple injections of the antisera a 
few days apart (26,27) The utility 
of this model to examine early 
cellular mechanisms in response 
to cell injury, recovery or 
advancement to fibrosis is 
apparent. Also the repeated 
injection of anti-Thy-1 and 
development of fibrosis may be 
analogous to persistent mesangial 

injury and progressive renal 
disease in humans. Product # 
PTX-003S.  
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